Multilinear duality and factorisation for Brascamp–Lieb-type inequalities
نویسندگان
چکیده
We initiate the study of a duality theory which applies to norm inequalities for pointwise weighted geometric means positive operators. The finds its expression in terms certain factorisation properties function spaces are naturally associated inequality under consideration. relate our Maurey–Nikishin–Stein operators, and present fully multilinear version Maurey’s fundamental theorem on operators through $L^1$. development involves convex optimisation minimax theory, functional-analytic considerations concerning dual $L^\infty$, Yosida–Hewitt finitely additive measures. consider connections with interpolation discuss ramifications context concrete families inequalities, including Loomis–Whitney Brascamp–Lieb Kakeya inequalities.
منابع مشابه
Optimal Hardy–littlewood Type Inequalities for Polynomials and Multilinear Operators
Abstract. In this paper we obtain quite general and definitive forms for Hardy–Littlewood type inequalities. Moreover, when restricted to the original particular cases, our approach provides much simpler and straightforward proofs and we are able to show that in most cases the exponents involved are optimal. The technique we used is a combination of probabilistic tools and of an interpolative a...
متن کاملWeighted Multilinear Poincaré Inequalities for Vector Fields of Hörmander Type
Abstract. As the classical (p, q)-Poincaré inequality is known to fail for 0 < p < 1, we introduce the notion of weighted multilinear Poincaré inequality as a natural alternative when m-fold products and 1/m < p are considered. We prove such weighted multilinear Poincaré inequalities in the subelliptic context associated to vector fields of Hörmader type. We do so by establishing multilinear re...
متن کاملSome sharp inequalities for multilinear integral operators
In this paper, some sharp inequalities for certain multilinear operators related to the Littlewood-Paley operator and the Marcinkiewicz operator are obtained. As an application, we obtain the (L p , L q)-norm inequalities and Morrey spaces boundedness for the multilinear operators.
متن کاملGeneral Minkowski type and related inequalities for seminormed fuzzy integrals
Minkowski type inequalities for the seminormed fuzzy integrals on abstract spaces are studied in a rather general form. Also related inequalities to Minkowski type inequality for the seminormed fuzzy integrals on abstract spaces are studied. Several examples are given to illustrate the validity of theorems. Some results on Chebyshev and Minkowski type inequalities are obtained.
متن کاملBell inequalities from multilinear contractions
We provide a framework for Bell inequalities which is based on multilinear contractions. The derivation of the inequalities allows for an intuitive geometric depiction and their violation within quantum mechanics can be seen as a direct consequence of non-vanishing commutators. The approach is motivated by generalizing recent work on non-linear inequalities which was based on the moduli of comp...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of the European Mathematical Society
سال: 2022
ISSN: ['1435-9855', '1435-9863']
DOI: https://doi.org/10.4171/jems/1229